Genetic determinants of swimming motility in the squid light-organ symbiont Vibrio fischeri
نویسندگان
چکیده
Bacterial flagellar motility is a complex cellular behavior required for the colonization of the light-emitting organ of the Hawaiian bobtail squid, Euprymna scolopes, by the beneficial bioluminescent symbiont Vibrio fischeri. We characterized the basis of this behavior by performing (i) a forward genetic screen to identify mutants defective in soft-agar motility, as well as (ii) a transcriptional analysis to determine the genes that are expressed downstream of the flagellar master regulator FlrA. Mutants with severe defects in soft-agar motility were identified due to insertions in genes with putative roles in flagellar motility and in genes that were unexpected, including those predicted to encode hypothetical proteins and cell division-related proteins. Analysis of mutants for their ability to enter into a productive symbiosis indicated that flagellar motility mutants are deficient, while chemotaxis mutants are able to colonize a subset of juvenile squid to light-producing levels. Thirty-three genes required for normal motility in soft agar were also downregulated in the absence of FlrA, suggesting they belong to the flagellar regulon of V. fischeri. Mutagenesis of putative paralogs of the flagellar motility genes motA, motB, and fliL revealed that motA1, motB1, and both fliL1 and fliL2, but not motA2 and motB2, likely contribute to soft-agar motility. Using these complementary approaches, we have characterized the genetic basis of flagellar motility in V. fischeri and furthered our understanding of the roles of flagellar motility and chemotaxis in colonization of the juvenile squid, including identifying 11 novel mutants unable to enter into a productive light-organ symbiosis.
منابع مشابه
Population structure of Vibrio fischeri within the light organs of Euprymna scolopes squid from Two Oahu (Hawaii) populations.
We resolved the intraspecific diversity of Vibrio fischeri, the bioluminescent symbiont of the Hawaiian sepiolid squid Euprymna scolopes, at two previously unexplored morphological and geographical scales. These scales ranged from submillimeter regions within the host light organ to the several kilometers encompassing two host populations around Oahu. To facilitate this effort, we employed both...
متن کاملCharacterizing the Host and Symbiont Proteomes in the Association between the Bobtail Squid, Euprymna scolopes, and the Bacterium, Vibrio fischeri
The beneficial symbiosis between the Hawaiian bobtail squid, Euprymna scolopes, and the bioluminescent bacterium, Vibrio fischeri, provides a unique opportunity to study host/microbe interactions within a natural microenvironment. Colonization of the squid light organ by V. fischeri begins a lifelong association with a regulated daily rhythm. Each morning the host expels an exudate from the lig...
متن کاملFlrA, a -Dependent Transcriptional Activator in Vibrio fischeri, Is Required for Motility and Symbiotic Light-Organ Colonization
Flagellum-mediated motility of Vibrio fischeri is an essential factor in the bacterium’s ability to colonize its host, the Hawaiian squid Euprymna scolopes. To begin characterizing the nature of the flagellar regulon, we have cloned a gene, designated flrA, from V. fischeri that encodes a putative -dependent transcriptional activator. Genetic arrangement of the flrA locus in V. fischeri is simi...
متن کاملBacterial Bioluminescence Regulates Expression of a Host Cryptochrome Gene in the Squid-Vibrio Symbiosis
The symbiosis between the squid Euprymna scolopes and its luminous symbiont, Vibrio fischeri, is characterized by daily transcriptional rhythms in both partners and daily fluctuations in symbiont luminescence. In this study, we sought to determine whether symbionts affect host transcriptional rhythms. We identified two transcripts in host tissues (E. scolopes cry1 [escry1] and escry2) that enco...
متن کاملDraft genome sequence of Vibrio fischeri SR5, a strain isolated from the light organ of the Mediterranean squid Sepiola robusta.
Here, we describe the draft genome sequence of Vibrio fischeri SR5, a squid symbiotic isolate from Sepiola robusta in the Mediterranean Sea. This 4.3-Mbp genome sequence represents the first V. fischeri genome from an S. robusta symbiont and the first from outside the Pacific Ocean.
متن کامل